

Introduction

Definition 1 Let G be a group with a finite generating set S. The **Cayley** graph of G is a graph with vertex set given by the elements $g \in G$ and a directed edge corresponding to $s \in S$ between $g_1, g_2 \in G$ if $g_2 = g_1 \cdot s$. Using the length metric on the Cayley graph, we can define a metric on G, called the word metric. For more background, see [2].

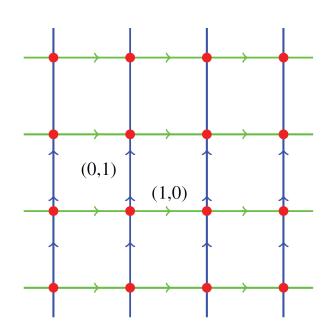


Fig. 1: Cayley graph of \mathbb{Z}^2 with respect to $\{\pm(1,0),\pm(0,1)\}$.

Definition 2 A *nearest-neighbor random walk* on the Cayley graph of G is a random sequence of adjacent vertices. Usually, the first element is $id \in G$, and each successive element is determined by randomly choosing a generator from S and moving along that edge to get to the next vertex.

Our goal is to study the long-term behavior of these random walks in infinite groups.

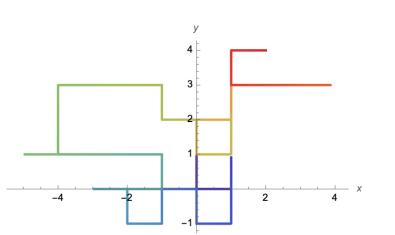


Fig. 2: Random walk on \mathbb{Z}^2 with respect to $\{\pm(1,0),\pm(0,1)\}$; action is component-wise addition

Random Walks in \mathbb{Z}^2

Using the word metric on \mathbb{Z}^2 associated to the standard generating set $\{\pm\{1,0\},\pm\{0,1\}\}$, we get a metric related to the taxicab metric on \mathbb{R}^2 .

Question 1 How long will it take for a random walk in the Cayley graph of G to reach or hit a sphere of a given radius?

Answer: In \mathbb{Z}^2 , the expected number of steps it will take for the random walk to hit the taxicab sphere of a given radius grows quadrically with the radius. Moreover, the random walk is more likely to hit the sphere in the geometric center of each quadrant.

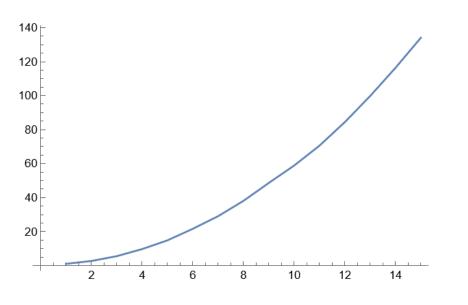


Fig. 3: Expected time to hit taxicab sphere of different radii (5000 trials)

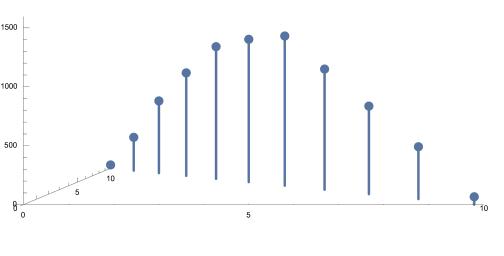


Fig. 4: Distribution of where the random walks hit sphere of radius 10

RANDOM WALKS ON GROUPS

Zhiqi Gao, Tianze Huang, Basia Klos, Yanli Liu, Jacob Petrie Faculty mentor: Nate Fisher; Graduate mentor: Caitlyn Booms University of Wisconsin - Madison

Random Walks in Heisenberg Group

Definition 3 The Heisenberg group $H(\mathbb{R})$ is a 3-dimensional group that can be represented using exponential coordinates by elements $(x, y, z) \in \mathbb{R}^3$ and where the multiplication of elements is given by

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2}(xy' - x'y)\right).$$

Definition 4 The discrete Heisenberg group $H(\mathbb{Z})$ is the set of lattice points in $H(\mathbb{R})$ generated by the standard generating set $S = \{\pm(1,0,0), \pm(0,1,0)\}$. Another generating set that we will investigate is $S_a = \{\pm(1,0,0), \pm(0,1,0) \pm (1,a,0)\}$ for small values of $a \in \mathbb{N}$.

For any finite generating set of $H(\mathbb{Z})$, we can investigate random walks in the Cayley graph of $H(\mathbb{Z})$ equipped with the word metric. For the standard generating set S, we were able to implement the word metric given in [1]. To each word metric in $H(\mathbb{Z})$, there is also an associated sub-Finsler metric in $H(\mathbb{R})$ seeing the large-scale geometry [3]. The unit sphere in $H(\mathbb{R})$ of the sub-Finsler metric associated with the standard generators S, given in Figure 6, has four vertical walls (missing from the figure), a ceiling, and a basement. Using this sphere and a family of dilations in the group, we can partition $H(\mathbb{R})$ into vertical and horizontal regions to study the long-term behavior of random walks.

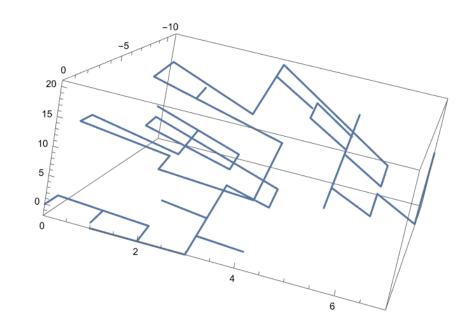


Fig. 5: Random walk in Cayley graph of $H(\mathbb{Z})$ with respect to $S = (\pm 1, 0, 0), (0, \pm 1, 0).$

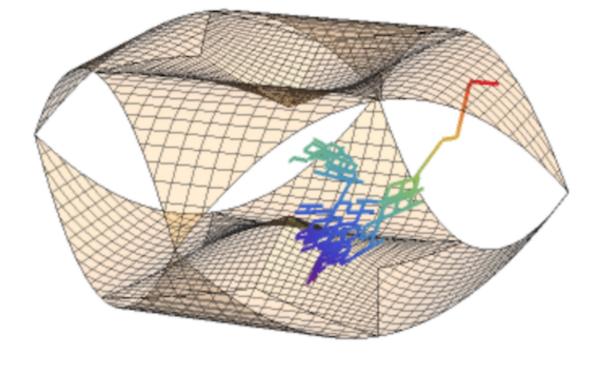


Fig. 6: Random walk hitting sphere of radius 20 in $H(\mathbb{R})$ with respect to $S = (\pm 1, 0, 0), (0, \pm 1, 0)$

Questions and Results

Question 2 How does the average distance from the origin of a random walk in $H(\mathbb{Z})$, measured with a Heisenberg distance function, vary as the number of steps in the walk increases? And how does this answer change if we use different generating sets?

Answer: Figure 7 shows the average distance of random walks of length $n \in$ $\{1, \ldots, 100\}$ using generators S and S_1 and 100 trials for each n.

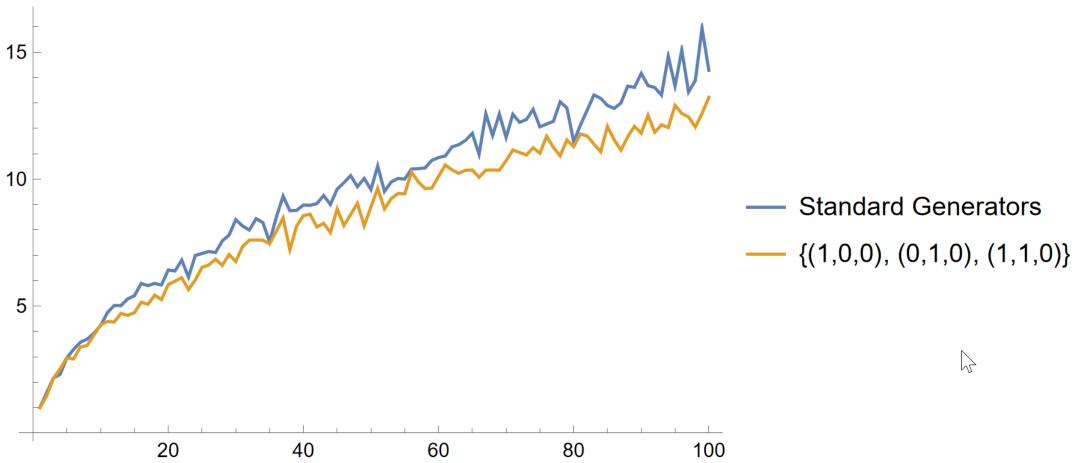
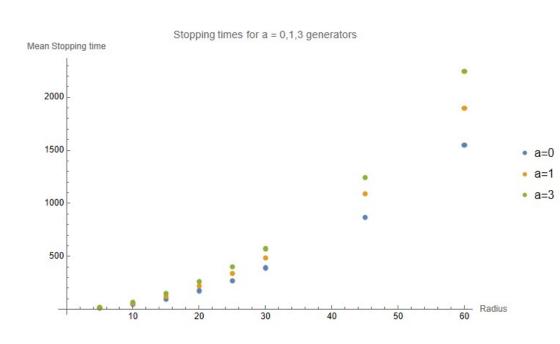


Fig. 7: Average distance from origin of random walk in $H(\mathbb{Z})$ with n steps

Questions and Results Cont.

Question 3 For a given radius R and generating set S_a , how m expect to take before hitting the sphere of radius R in $H(\mathbb{R})$?

Answer:



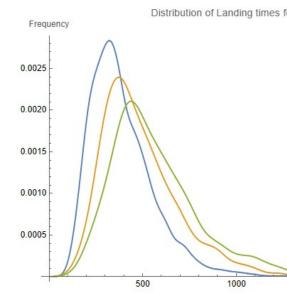


Fig. 8: Average number of steps to hit sphere of radius R for different values of a and R.

Fig. 9: Comparison of the distri radius R = 30

Question 4 Where on the sphere of radius R is a random walk m more likely to be in a vertical wall or in a ceiling/basement region? by the choice of generating set?

Answer:

Generating Set	Vertical Wall	Ceiling/Basemer
S	\sim 0.4	\sim 0.6
S_1	${\sim}0.75$	\sim 0.25
S_3	${\sim}0.85$	\sim 0.15
$S_a, a \ge 4$	~ 0.85	~ 0.15

Further Research

- Explore biased random walks on Heisenberg group with same
- Explore same questions with more generating sets of Heisenb ize current findings
- Explore the exact hitting region (instead of vertical/horizonta) walks at various radii, along with sequences that lead to it
- Explore similar topics on other groups, such as Lie groups

Acknowledgements

Thank you to the MXM Lab at the University of Wisconsin for the o this project. We are also grateful to Caitlyn Booms and Nate Fishe guidance, and expertise.

References

- [1] Sébastien Blachère. "Word distance on the discrete Heisenberg group". er maticae 95.1 (2003), pp. 21-36. URL: http://eudml.org/doc/285003.
- [2] Matt Clay and Dan Margalit. Office hours with a geometric group theorist. F 2017.
- [3] Pierre Pansu. "Croissance des boules et des géodésiques fermées Ergodic Theory Dynam. Systems 3.3 (1983), pp. 415-445. ISSN: 0143 S0143385700002054.URL:https://doi.org/10.1017/S0143385700002054

AND SERIMENTAL MAINTERNATIONS OF CALL AND
nany steps should we
for R = 30
a=0 a=1 a=3
1500 2000 Stopping Time
ibutions for hitting the sphere of for $a = 0, 1, 3$.
nore likely to hit? Is it ? How is this affected
nt
e questions perg group to general-
al regions) of random
opportunity to work on er for their mentorship,
ng. In: Colloquium Mathe-
Princeton University Press,
dans les nilvariétés". In: 3-3857. DOI: 10 . 1017 / 4.