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Background & Motivation Results: Generalization Abilities
CLIP’s text encoder is tuned for image-text alignment, not language struc- Demonstrating Generalization: We show that a model fine-tuned on
ture, making it sensitive to |ingUiStiC variations. For example, synonyms Base Model Cosine Similarities Tuned Model Cosine Similarities 1.00 text Set A can "n_p.rove the performance on task B , which shows the
and antonyms do not behave as desired: o . I075 model is not overfitting.
Specifically, we evaluate performance on the Openimage subset with dif-
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Results: Zero-Shot Accuracy Gains Summary
“angry" is closer to “happy" than “glad” is to “butterfly” is closer to “bed" instead of its
“happy” hyponym “lycaenid” Our method yields consistent classification accuracy improvement

1. A Structure-Based Fine-Tuning Method for CLIP’s Text Encoder
Using Hierarchical Information

with both settings in ImageNet, Openimage, and FER2013.
Question: Can we modify CLIP in a way that brings back its structural

understanding of language, while still maintaining its alignment with im- 2. Improved Zero-Shot Classification Accuracy and Robustness to
age representations? ImageNet Synonym+Hypernym results Linguistic Variations
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We fine-tune CLIP’s text encoder by exploiting the semantic hierarchy of =601 TS~ ing a large polysemy portion and decreasing
WordNet tq r_ebund its undgrstandlng of language structure with no image 8 TS — marginal gains in applying the method to the
data and minimal computation (?verhead. | E .. T Y entire WordNet structure.
Our Goal: Craft a loss that with components corresponding to our two ¢ 5071  TTeal_ i e
goals: E asl T S B U * - Image-Caption Datasets: Adapt the method-
‘‘‘‘‘‘‘‘‘‘‘ ology for image-caption datasets like LAION
» Distance Loss (Lgistance): Reflect semantic relationships using Wu- 401, , , , ¥ for%)rloader 3 0 IicatF))iIit
Palmer Similarity (s.) 100 PO 300 PP g
o S o - Limitations with Propositional Words:
* Regularization Loss (Lreg): Prevents significant deviation Accuracy improves on original and synonym/hypernym-replaced class Frameworks like CLIP struggle with terms
2 names. such as not, is a, and more/less than, which
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